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Abstract. The charge excitation gap for polyacetylene (CH), was calculated using the Lanczos 
algorithm applied to small chains. The amal value of 4.5 i 0.4eV for lhis gap was obtained 
using the extended Hubbard model with the parameters fixed from ab inirio calculations (reprled 
elsewhere). For the second set of model Hamiltonian parameters recommended by many 
experimenla!isls (those measuring optical gaps or on-site spin densities in plyacetylene) the 
mmpnding value for the charge transfer gap is 1.6 5 0.8eV. which h reasonably close to 
what is considered the experimentd value. Our results confirm the earlier finding that the 
eleclron colrelations favour dimerization in plyacetylene. 

1. Introduction 

Energy band calculations for solids are difficult, costly and usual suffer from errors. The 
local density approximation [ I ,  21 is successful in describing the ground-state properties 
of semiconductors and isolators, but the band gaps coming out of the calculations are 
frequently too small 13-51. An altemative and much more costly approach, ab initio 
calculations performed in the Hartree-Fock approximation, yield band gaps that are too 
large [&SI. Therefore, it becomes clear that in order to obtain correct values of the band 
gaps it is necessary to include electron correlation effects, i.e. all the effects of electron- 
electron interactions which are not included in the ab initio Hartree-Fock calculations. 
Unfortunately, such ab initio correlation calculations for infinite systems (and even for 
large molecules) are much more difficult, costly and time consuming, and only recently 
have such calculations become possible [7-1 I], which is a great achievement. 

Ab initio correlation calculations for infinite aedimensional polyacetylene that go 
beyond second-order perturbation expansion were reported in [12,13]. In these papers 
the dependence of the total ground-state energy on the dimerization was analysed. It was 
claimed that electron-lattice coupling alone leads only to a marginal dimerization of the 
chain and that the correlation effects are responsible for the observed large dimerization, 
as pointed out by Horsch about a decade ago [14]. A common model approach to the 
electron correlation problem in polyacetylene is an extension of the Su-Schriffer-Heeger 
Hamiltonian [15,16], by the terms which describe the electmn-electron interactions (the so- 
called Peierls-Hubbard Hamiltonian [17]). One of the significant results obtained by Kanig 
and Stollhoff [I31 was the mapping of their ab initio results onto the PeierkHubbard 
Hamiltonian [IS, 161. In this way it was demonstrated that this model Hamiltonian contains 
the essential physics of the dimerization in polyacetylene. 

If the electron-phonon coupling is neglected, the Peierls-Hubbard Hamiltonian reduces 
to the so-called extended Hubbard model [I91 which has been studied by several authors. 
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The phase diagram of the extended Hubbard model was investigated using various 
techniques such, as Hartree-Fock [20], functional integral formalism [21], quantum Monte- 
Carlo [ZZ], renormalization group and Lanczos method [23-25]. The ground state may 
correspond either to a free electron liquid, to a charge density wave, or to Mort-Hubbard 
states, depending on the precise values of the model parameters. Much less is known about 
the charge excitation gap of the onedimensional extended Hubbard model for half-filling. 
It was discussed only in [23-251, with emphasis on a qualitative survey of the U-V plane 
in order to observe how the gap reflects itinerancy of the electrons. 

The purpose of the present study is to answer an important question conceming the 
value of the charge excitation gap in polyacetylene when dimerization is present. We shall 
use exact diagonalization of finite systems and finite-size scaling to obtain the gap of a 
onedimensional polyacetylene chain. 

2. Computational details and results 

We use the following Peierls-Hubbard Hamiltonian: 

t H = ti.i+l (c!,ci+I c + ci+l ,tic) + Uni t n i  4 
ic i 

where i runs over all sites (all n orbitals), zi.i+l = to f 2 6  are the hopping integrals, e 
is dimerization coordinate; N is the total number of sites (meaning C atoms) and a and 
K are the electron-phonon coupling and spring constants, respectively. In (1.1) cl,. is the 
creation operator of a n  electron with spin U on site i, is the respective electron number 
operator and ni = ni, +nir; U is the on-site Coulomb repulsion ofthe electrons and Vi.i+l 
is the nearest-neighbour Coulomb repulsion. As the effect of different length of the bonds 
on the value of V;,j+i is insignificant [13], we take Vi.i+l = V in our calculations. For the 
half-filled band one has the chemical potential = U / 2  4- 2V. The Hamiltonian (1.1) is 
invariant under particle-hole transformation. The same Hamiltonian (1.1) has been used 
by Loh and co-workers [17], and by Waas and co-workers [18] to study the ground-state 
properties of small clusters and to obtain the phase diagram depending on the parameters 
of the model. 

Unfortunately, the values of the parameters entering the model Hamiltonian are not 
precisely known for polyacetylene. Here we use for most of them the values derived 
by Konig and StoIlhoff from ab inirio calculations. For the dimerization we take the 
experimental value 5 = 2.6pm 1261. The fitted values of i o  = -2.5eV, a = 40meVpm-l 
give ti,i+, = fo - 2 4  = tl = -2.708eV for odd i, ti.;+, = 20 + 2 5  = tz = -2.292eV for 
even i; electron-electron interactions are described by U = 1 lSeV,  V = 2.4eV [13]. 

-4.oto) entering this set of model parameters is not 
universally accepted as the correct one. Many experimentalists and theoreticians favour a 
much lower value: - 1 3 0  < U -3.5$ [27-301. (There is less agreement about V. Some 
authors 128,291 suggest that -0.5t0 < V < -1.5t0). Therefore, in the following, we will 
also consider the second set of model Hamiltonian parameters: U = -25ro = 6.25 eV [28- 
301 and V = U/2 = 3.125 eV. Note that the value of V equal to one half of U corresponds 
roughly to maximal possible dimerization, as found in small cluster calculations [IS]. For 

The very large value of U (U 
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the sake of simplicity, the remaining parameters entering both sets are taken to be exactly 
the same. 

The Lanczos method is an excellent one to obtain low-lying eigenvalues for a small 
cluster. As the method is described in detail in numerous papers and textbooks (see, for 
example, [31,32] and [17,18,23-25]), we will not repeat here its description. For small 
clusters of N = 6,8, 10, 12 sites the actual computations were fast and could be completed 
on personal computers or small workstations. 

We have used both modified cyclic (periodic) (MPBC) and free boundary (FBC) 
conditions. The importance of imposing the proper boundary conditions in small cluster 
calculations was recognized by several authors [18,33,34]. Namely, there is a subtle 
difference between the chains with N = 4m and N = 4m + 2 sites, respectively, known 
also in quantum chemistry. In order to approximate the infinite chain by finite rings with 
the states at the Fermi level, the cyclic boundary conditions are the most suitable in the first 
case, whereas the anticyclic boundary conditions have to be taken in the second one. A 
more detailed discussion is given in the appendix. For calculations with anticyclic boundary 

both types of boundary conditions VN,N+I = VN.1 = V was assumed 
For free boundary conditions one has VN,N+I = 0 and tN.N+] = 0. The elastic energy 

term in (1.1) should be modified to 2 ( N  - 1 ) K t 2 .  Furthermore, it is clear that any results 
for small clusters will be different for two different choices; namely, we can take either 
ti.i+l = rI and $,j+l = iz. as described above for the closed rings where i and j are odd 
and even numbers respectively, or ti.i+l = tz and t j , j+ l  = t i .  In order to minimize the 
effect of free boundaries it is necessary to perform all the computations for each of the 
two above-mentioned cases separately, and take the average value of the energy obtained 
in each case as a final result. Note that for cyclic and anticyclic boundary conditions such 
a problem does not exist. We have verified in our calculations that the results obtained are 
independent of the chosen value of the last hopping element in (1.1). being either -ti or 
- tz .  

The charge excitation gap for smal l4  site clusters, E,",. according to the well known 
formula [23-25,351 is given by 

(2.2) 

where Et ("+ .  "4) is the ground-state energy of the N site system with n+ and "3. electrons 
for U =t and 4, respectively. We consider here the half-filled case nt = "1 = 
N/2. Furthermore, thanks to the particle-hole symmetry it is sufficient to calculate only 
E t ( i N ,  i N )  and E t ( $ N ,  i N  + 1) = E / ( $ N ,  ily - 1) [23-25,351 to calculate E&, 
from (2.2). Note, however, that it is not true for FBC and for the dimerized case (i.e. for 
t1 # rz # to) where the particle-hole symmetry breaks down. 

The charge excitation gap, E&,, was calculated for clusters of N = 6,s. IO and 
12, for both types, m c  and FBC, of the boundary conditions, and for the dimerized 
(tl = -2.708eV. rz = -2.292eV) as well as the non-dimerized (tl = tz = -2.5eV) 
case and for two sets of model Hamiltonian parameters U and V, i.e. U = 11.5 eV, 
V = 2.4eV [I31 and for U = 6.25eV. V = 3.125eV [28-301. 

Before the presentation of the data let us make a technical remark. Namely, prior 
to any calculations the question about the precise values of model parameters has to be 
addressed. The problem of the correct choice of the values of to, U, V has been already 
discussed. However, there are also some doubts about the precise values of (I and K. 
Thus in order to proceed further we have to make some assumptions. We have chosen to 

conditions we Used tN,N+L = t N . 1  = 4 2 ,  which corresponds to C N + I , ~  = -CI,~ and for 

E N  gap = E N  ( n + , n l +  1) - 2E:(n+,n~) + E:(n+,nJ - 1) 
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use (Y = 40meVpm-I as obtained in [ 131 and the experimental value of the dimerization 
Q = 2.6 pm [26]. The value of K was next fixed by demanding that the total energy Eo. as a 
function of dimerization parameter Q has an absolute minimum exactly at Q = 2.6pm. The 
technical implementation of these ideas is as follows. We compute &:($N. hN, K = 010) 
= E:($N, $N. K = OIE)/N: the minimal energy per site of the N-site Hamiltonian (1.1) 
with K fixed to zero for N = 6, 8, 10, 12 and for { = 0. 1.5, 3.0 and 4.5 pm. For each 
one of the fixed we make extrapolation to obtain q ( K  = 018): the minhal energy 
per site for the infinite chain (at half-filling), using N = 6, 8, 10, 12 data points. As 
an example, we assume (compare [17,18,U-25,36]) that &:(K = 010 et +ez/N. 
The value el is the extrapolated minimal energy we were looking for (in the limit of 
N -+ 03): el = Er(K = Ole).  Next, we take four such values: Er(K = O l t j )  
for 5, = 0, = 1.5pm, Q3 = 3.0pm and {d = 4.5pm and fit them with a parabola 
& r ( K  = Ole) = a + bQ + cQZ. Finally, with a, b and c at our disposal we find that 
K = 2.5431neVpm-~ for the first set of to, U, V (i.e. for -2.5eV, 11.2eV and 2.4eV, 
respectively). For the second set (i.e. for -2.5eV. 6.2SeV and 3.125eV) we obtained 
K = 3.132meVp1n-~. These values will be used for all our subsequent computations. One 
may, of course. object that such a procedure of first making an extrapolation to N = 00 

and subsequently fitting the extrapolated data is likely to yield some errors. To address this 
problem we repeated all the above-mentioned calculations using the raw data for the largest 
cluster (N = 12) instead of making an extrapolation. The values of K obtained that way 
are very close to our primary choice. This simple consistency test gives some additional 
support to the K values which we use in what follows. 

With the values of all the parameters fixed the question arises of how to extrapolate 
small cluster results for E, to an infinite system. It is well known [23-2S.36] that Ew 
is roughly linear with 1,” so the extrapolation to infinite system is again possible. In fact, 
for all cases all four data points for Em against 1/N = 116, 118, 1/10, 1/12 fit nicely 
onto a straight line. We do not feel that the cubic Legendre extrapolation (compare [23]). 
or a parabolic one, would be a better choice. There is a danger of obtaining an error 
being due to the so-called Runge phenomena for polynomial interpolation [28]. (In fact, 
for unnatural. so-called modified antiperiodic boundary conditions 1231, such an error was 
indeed identified when trying cubic Legendre interpolation). Our method agrees as well with 
the extrapolation performed by Waas and co-workers [I81 for the dimerization parameter. 

The final results for the first set of model Hamiltonian parameters (ro = -2.5eV, 
U = 11 .5 eV, V = 2.4 eV, K = 2.543 meV pW2) are presented in figure 1. One finds the 
gap of E,, = 4.5 eV for the modified periodic boundary conditions. In figure 2 we present 
similar results obtained for the free boundary conditions, which gave Ew = 4.1 eV. They 
are not too reliable, as the finite-size effects are definitely much more pronounced in small 
clusters with free b o u n w  conditions. Neveltheless, the relatively small discrepancy of 
0.4eV from OUT previous result can sewe as an estimate of the error in the obtained value 
of EeP. Thus our final result is E,, = 4.5 ir 0.4eV. This value should be compared to 
an approximate 4.3eV value mentioned in 1131 which was obtained using the model (1.1) 
with a different value of K = 3.9meVpm-*. There are two possible reasons for the small 
discrepancy found. First, it may be caused by an approximate treatment of local correlation 
within the local approach ansatz [7-101 with a small subset of local o p e m r s  181. Second, 
it seems that the value of K, found in [I31 from the self-consistent field calculation, has to 
be reduced when electron correlation effects are taken into account. 

For the second set of the model Hamiltonian parameters (to = -2.5eV, U = 6.25 eV, 
V = 3.125eV, K = 3.132meVpm-z) the corresponding results for the modified periodic 
boundary conditions are presented in figure 3 and the results for the free boundary conditions 
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Fqure 1. Charge excitstion gap. EEp. calculated with lhe modified periodic boundary conditions 
(WE) as a function of 1 /N .  Results of finite cluser calculations are given by dots. The full 
Cwe conesponds to the dimerized w e  (e = 2.6pm). the broken curve to the non-dimerized 
one (c = O)(to = -2.5eV. U = 11.5eV. V c 2.4eV). 

- 

0.0 01 0.2 
1 I N  

Figure 2. Charge excitation gap, EL9,  calculated with the free boundary conditions (FBC) as a 
functionof11N ( Io= -2.5eV,U=11.5eV, V =2,4eV),Themeaningofthedatapointsand 
curves are as in figure 1. 

in figure 4. The charge transfer gap in this case is Egap = (1.6rt0.8) eV, which is reasonably 
close to the experimental values 1.8-1.9 eV [27-29,36]. Thus our result supports the second 
set of parameters, namely the one with smaller U/ro .  

3. Summary and conclusions 

The results of our calculations confirm the earlier findings [ 14,17,18,23] and demonstrate 
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Figure 3. Charge excilalion gap, ELp, calculated with lhe MPOC as a function of 11N 
(IO = -2.5eV. U = 6.25eV. V = 3.125eV). The meaning of ihe data pints and c w e s  
are as in figure 1. 

5.0, 

... 
4 

( I N  
Figure 4. Charge excitation gap, E&,. calculated with h e  FBC as a function of 1/N 
(lo = -2SeV.  U = 6.25eV. V = 3.125eV). The meaning of the daw p i n &  and curyes 
are as in figure 1. 

that the correlation effects indeed favour dimerization in polyacetyIene. We have found that 
for all clusters the ground-state energy of dimerized state is lower than the one obtained for 
the non-dimerized state. 

The performed diagonalization of finite clusters shows that the dimerization makes E, 
(2.3) larger with respect to the non-dimerized case. 

Finally, for the first set of model Hamiltonian parameters (characterized by a large value 
of U/@) we obtained Egap = 4.5fOAeV. For the second set (with small U/to) we obtained 
ESP = (1.6 i 0.8) eV which is very close to the experimental result. The controversy over 
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which model is correct (the one with the larger or the smaller U/@ cannot, however, be 
settled with these results. There is a possibility that the model Hamiltonian is too simple 
to describe correctly both the dimerization and the gap and therefore it might be necessary 
to take into account long-range Coulomb interactions (instead of a single nearest-neighbour 
V-term) [28,39]. 

Finally. we would like to stress the many-body character of the ground state found in 
the exact diagonalization of finite clusters. For both sets of model Hamiltonian parameters 
this many-body character is inherent in the formation of the gap in the electronic states of 
polyacetylene. Therefore, the value of this gap cannot be quantitatively explained by the 
band structure calculations performed within the local density approximation [381. 
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Appendix 

For the half-filled band in the free-fermion case (U = V = 0) the Fermi momentum of 
the infinite chain is lkFl = $r [ 18.341. For small systems one would then expect better 
extrapolated results to the infinite chain if lkFl = 6. was included in the set of individual 
momenta, k j .  Applying periodic boundary conditions the allowed wave vectors kj are 
kj = % j / N  and the above condition is fulfilled only for N = 4n. If we use antiperiodic 
boundary conditions [18,29,34], the allowed wave vectors are kj = 2 n j / N  + z / N ,  and 
lkFl = +r is included instead for N = 4n + 2. This procedure eliminates undesired 
oscillations of the calculated energies. With increasing N the dependence on N vanishes. 

Antiperiodic boundary conditions are equivalent to a transformation of fermion operators 
as follows: C N + ~ . ~  = -clc and ci,,, = for i < N .  This transformation changes the 
sign of the hopping element INJ, which closes the ring. and leaves the on-site and inter- 
site Coulomb interactions invariant. Therefore the antiperiodic boundary conditions can 
be easily implemented in the real space calculations for the chains of N = 4n + 2 atoms 
described by the Hamiltonian (1.1) by taking the terminal hopping element with the reversed 
sign. 
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